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Abstract. Using the specVal moments method, we have studied the inelastic neutron scattering 
by phonons in an AI-Mn quasi-crystal. The structural model is derived from the work of 
Duneau and Oguey. For the dynamical model we assume an effective potential with force 
consmu depending upon equilibrium distances. Calculations are performed with the first 
seven rational approximants of the quasi-periodic structure. Pseudo-acoustic dispersion curves 
associated with intense Bragg peaks are reported. Broadening of inelastic neutron scattering 
p e k  with increasing phonon frequency is found in high-order approximants. We compare our 
results with experimental spectra obtained on an AI-Mn-Pd quasi-crystal where such a behaviour 
has been observed. The relation of the peak broadening to the critical character of the modes is 
discussed. 

1. Introduction 

Many models have been investigated in the past few years to study the electronic and 
vibrational properties of quasi-crystalline systems. Most of them concern the properties 
of ID or 2D systems. Only very few studies have concerned the properties of 3D systems 
(Janssen 1988, Hafner and KrajW 1993, Los 1993, Los eta1 1993). In fact, for 3D systems, 
there is no exact solution: calculations can be performed only for limited clusters or for 
rational approximants. 

In this paper we present a theoretical study of the vibrational properties of the quasi- 
crystal AI-Mn. Although very few experimental results are available for this compound, 
it was interesting to develop a model because it is the simplest system which exhibits 
quasi-crystalline properties. It is a realistic 3D model describing the icosahedral AI-Mn 
[i-(AI-Mn)) phase. All the dynamical properties reported in experimental studies of various 
quasi-crystals can be easily derived from this simple binary model and especially the inelastic 
neutron scattering. 

Moreover it is a good tool for reproducing the inelastic neutron scattering by icosahedral 
AI-Mn-Pd [i-(AI-Mn-Pd)) for the low scattering energies. The dynamical properties of the 
i-(Al-Mn-Pd) phase have been recently studied [de Boissieu el a1 1993a,b). This quasi- 
crystal, unlike the AI-Mn phase, does not have a primitive Bravais lattice but a FCC lattice. 
However, this FCC structure is generated by a chemical ordering over a simple-cubic lattice. 
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The basic clusters involved are similar to those in the i-(AI-Mn) phase and consist of the 
Mackay icosahedra. It is thus reasonable to think that dynamical properties should be similar 
in both phases. The differences due to the Pd atoms can be seen in only the optical part of 
the spectra. 

The model used to describe the structure of the i-(AI-Mn) alloy is developed in section 2. 
In section 3 we present the dynamical model used to describe the interatomic interactions. 
The computational technique needed for the calculation of the scattering cross section is 
developed in section 4. The results of the computation are presented in section 5 where 
they are compared with experimental results. 

In the last section we discuss the origin of the broadening of the neutron peaks. 

2. Structural model 

The atomic structure of icosahedral quasi-crystals may be given a description in a 6D periodic 
space (see Janot (1992) for an introduction). This has been shown to be the only way to 
retrieve structural information from experimental diffraction data (Gratias et a1 1988, Janot 
eta1 1989). In the cut scheme (Bak 1986, Janssen 1986) the periodic 6D space decomposes 
in two subspaces, Epm, the physical space, and E,, the complementary space. The cubic 
6D lattice is then decorated with a set of 3D objects, called atomic surfaces, which lie in the 
complementary space Epup. Once atomic surface positions and shapes are specified, the 3D 
quasi-periodic structure is obtained as a cut through the decorated periodic lattice. 

In the case of the i-(AI-Mn) phase, the Patterson analysis of x-ray and neutron diffraction 
data (Janssen 1986, Gratias et al 1988), together with contrast variation data (Cahn et al 
1988), leads to a very simple model: there are three atomic surfaces located at the origin 
([OOOOOO] 6D coordinates) and at the body centre (0.5[ 11 11 1 11 6D coordinates); Mn is located 
on a sphere centred on the origin and is surrounded by an AI shell, and a small A1 atomic 
surface lies on the body centre. 

2.1. ModBed Duneau-Oguey model for the AI-Mn quasi-crystal 
Taking spheres as atomic surfaces is not satisfactory, for unphysical short distances will 
appear in the resulting 3D quasi-periodic structure. This problem was solved by Duneau 
and Oguey (1989) (see also Yamamoto and Hiraga (1988)) in the ideal model that they 
proposed for the i-(AI-Mn) phase. (The real sample had 6 5 %  Si, but as a first step we 
consider the alloy as a binary AI-Mn alloy.) Their model is built in such a way that no 
short distances are generated, the atomic density and the chemical composition agree with 
the experimental values, and a large number of 'Mackay icosahedra' are generated in the 
3D quasi-periodic structure. 

Apart from atomic surfaces at the origin and at the body centre, two small atomic 
surfaces are located on the mid-edge of the 6D cube in their model. It has been shown that 
such small atomic surfaces do not show up on a Patterson map, so that this solution cannot 
be ruled out only on the basis of a Patterson analysis but needs a quantitative comparison 
with diffraction data. 

The comparison of such models with experimental partial pair distribution functions 
showed that at least part of the atomic surfaces must be given a so-called 'parallel' 
component (de Boissieu er al 1990). In other words the location of such atomic surfaces 
is given by R ~ D  + R,, where R ~ D  is either the origin, the body centre or the mid-edge of 
the 6D cube and RPa is a vector in the physical space E,. A simple solution, suggested 
by Duneau, consists in displacing the atoms in the Mackay icosahedron. Their acceptance 
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domain is well defined (called S A  in the paper by Duneau and Oguey (1989)), so that the 
three radii of the different shells may be free parameters. When compared with partial pair 
distribution functions and diffraction data, the best solution is obtained with the following 
parameters: 

(i) small A1 icosahedron: R(A5) = 2.45 A; 
(ii) large Mn icosahedron: R(A5) = 4.85 A; 
(iii) A1 icosidodecahedron: R(A2) = 4.62 A. 
The corresponding values, when no parallel component is introduced, are 2.3 A, 

4.6 A and 4.82 A, respectively, i.e. the two icosahedra are expanded whereas the 
icosidodecahedron is retracted. 

Such a modification gave a first-neighbour distance distribution close to the periodic (I- 
(AI-Mn-Si) cubic ‘approximant’ periodic phase (Cooper and Robinson 1966) (see figures 1- 
3 later). This is particularly true for the AI-AI correlations, which have only two main 
components at 2.6 and 2.9 A when no parallel component is introduced, whereas the 
distribution splits over five neighbours when a parallel component is introduced (see 
figure 3). This is the only way to achieve agreement with the measured partial pair 
distribution function. 

2.2. The rational approximants 

The calculation of the dynamical response function of the quasi-crystal can be performed 
using a 3D quasi-periodic cluster, obtained by a cut of the 6D model. However, such a 
calculation was found to be influenced by surface atoms, even for relatively large clusters. 
To avoid this problem, periodic boundary conditions were used. 

A rational periodic approximant may be obtained easily from the 6D model. We used 
cubic approximants, by applying a linear phason strain to the periodic space. Practically 
this is done by replacing the golden mean r by its rational approximant p / q  in the phason 
part of the 6 x 6 matrix that transforms a 6D vector R into its components (Rpu, Rpr) in 
physical and perpendicular space (Elser and Henley 1985, Cahn et al 1988, Qiu and Jaric 
1989). Atomic surfaces also need to be deformed according to the same transformation, for 
short distances would otherwise appear (Lancon and Billard 1990). 

Some of the characteristics of the various approximants used in the calculations are 
given later in figures 1-3 and table 2 and are compared with the periodic Lu-(Al-Mn-Si) 
cubic crystal and with a quasi-periodic cluster. 

3. Dynamical model 

The choice of the interatomic potential model for an alloy such as AI-Mn is conditioned, 
firstly by the large proportion of A1 atoms for which the interatomic interactions are known 
to be correctly described by central forces (Walker 1956) and, secondly, by the distribution 
of equilibrium interatomic distances. 

In figures 1, 2 and 3 the Mn-Mn, AI-Mn and AI-AI distance histograms, respectively, 
are reported. In each figure, one can see from the top to the bottom the crystalline @-phase 
(Cooper and Robinson 1966), the 111 approximant, the 8/5 approximant and the quasi-crystal 
(the modified Duneau-Oguey model). 

It can be easily seen in these figures that for all structures the distribution of interatomic 
distances between first neighbours is relatively broad for each type of atomic couple. In 
such a condition it is no longer possible to assume a simple Lennard-Jones-type potential to 
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describe the interatomic interactions in AI-Mn alloys; in fact the stability can be obtained 
only with relatively large relaxation displacements of the atoms which lead to an inadequate 
shape of the density of states (DOS) and to sound velocities lower than experimental values. 
LanGon and Billard (1990) using a Morse-type potential obtained a stable structure but also 
after significant relaxation displacements of the atoms. 

3.1. Effective potential function 

So, in order to calculate the dynamical properties of the i-(AI-Mn) phase in the modified 
Duneau-Oguey model without any atomic relaxation displacement we choose an effective 
local potential function of the form 

with 

(3.2) 

This form, invariant with respect to rotation and translation of the Cartesian frame, is a 
generalization of that developed by WaIker (1956) for aluminium. In equation (3.2) the 
force constant k(W)(ri;) depends upon the type of the i-j bond ( ( ~ j )  = I, 2 or 3 for 
Mn-Mn, Mn-AI or A1-AI bonds, respectively) and is linear with the equilibrium distance 
r$ with different behaviours for first and second neighbours, as shown in figure 4. 

v!?,' = Lk(Yd(re,)(r..  - ' I  2 I J  ' I  $J 
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Figure 4. The variation in the effective force constants versus the equilibrium distance. The 
two slopes p t  and p z  cm be reduced to dimensionless consmm c1 and6 with (I = plk(rQ)/rO 
and 6 = p,k(r")/r". 

For each atomic pair type the potential depends upon four constants: the mean first- 
neighbour equilibrium distance ro,  the force constant k ( r o ) ,  the reduced slopes 01 and p (in 
ro and k(ro) units) of the two straight lines. In fact we have chosen the same slopes for all 
types of pair in order to use the minimum number of parameters. 
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3.2. Determination of the constunts and derivation of the dynamical matrices 

These constants are adjusted in the following way: we assume that the 111 approximant 
is a good approximation for the crystalline or-phase and the parameters are fitted to the 
sound velocities (Amazit et al 1992) and the one-phonon DOS curve (Miceli et ul 1986). 
The distances ro are given by neutron diffraction studies on AI-Mn-Si alloys (Duhois ef al 
1988). In table 1 we report the complete list of adjusted AI-Mn potential constants. 

lsble 1. AI-Mn effective potentid constants. U and p are the dimensionless reduced slopes of 
the two straight lines in figure 4. 

b p e  rn k(r")  
of bond (h) (mdyn h-l) a = plk(rn)) / rO p = p2k(r0) /rn 

Mn-Mn 2.67 0.208 -1.316 -0.187 
AI-Mn 2.54 0.289 -1.316 -0. I87 
AI-AI 2.03 0.140 -1.316 -0.187 

Using the harmonic part of this potential in Cartesian coordinates, the derivation of the 
dynamical matrix for any approximanf, taking into account the periodic boundary conditions, 
is straightfonvard. The same calculation can be easily done also for any spherical cluster of 
the quasi-crystal, but it is better to calculate the dynamical properties of large approximants 
rather than those of quasi-crystalline clusters in order to avoid the problems due to surface 
modes. 

Table 2 gives, for all calculated approximants, the edge of the cubic cell, the number 
of atoms in the cell, the chemical formulae and the number of non-zero elements in the 
dynamical matrix. 

Table 2. The seven first npproximants of the icosahedral phase of AI-Mn in the modified 
Duneau-Oguey model. 

Edge n of the Number Number of 
Cell of atoms Chemical m a t h  

Approximant (A) in a cell formula elements 

1/1 12.64 122 Also.33Mnis.67 22 142 
U1 20.46 521 AIao.~Mn19.96 91 453 
3/2 33.10 2022 Ah6.71Mnzm 330 370 
513 53.55 8 852 AIn.quMn22.1n 1481 568 
8/5 86.65 37381 Alm2Mn~2.18 6254239 

IUS 140.21 158M10 Aln,ssMnn,lr 26545 186 
21/13 226.86 668 236 Aln.7sMnu.s I1  1157086 

4. Computational techniques 

The inelastic scattering cross section of slow neutrons by condensed matter is given by the 
well known expression (Lovesey 1986, Benoit 1989) 
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where w > 0 corresponds to neutron energy loss, and with 

(4.2) 

In these expressions ej(n), m,, b, and exp(-W,) are the nth atomic amplitude of the 
jth mode with frequency wj, the nth atomic mass, the Fermi scattering length and the 
Debye-Waller factor, respectively. nj = n(wj) = [exp(#?fiwj) - 11-' with #? = l /kT is the 
Boltzmann factor. ko and k are the incident and scattered neutron wavevectors, respectively. 
Q d  = rC, - IC is the scattering vector. 

4.1. The spectral moments method (Benoit 1987, 1989, Benoit et al 1992) 

One can show that (4.1) is equivalent to 

dZo/(dRdw) = ( k / k ~ ) i ? ( I / [ l  - exp(-,BRo)]}S'(Qd, 0) 

with 

(4.3) 

and, for w > 0, S'(Qd, w )  can be replaced by 

j ( Q d i U )  =CIFj(Qd)I*&(u-At) (4.4) 
I 

with U = w2 and A = wj'. 
So the spectral moments method can be applied to determine the inelastic neutron 

scattering cross section. This is done in the following way: we introduce the vector t@) 
such that 

where (Y = x ,  y ,  z with 

4: = bnIexp( -Wn) / ,6 JQ~ exP[-iQd r (n) l  

in the site representation e;. Then, the moments of the function S(Qa, U) are directly 
derived from the dynamical matrix D of the sample by 

pn = / s(Qd, u)u"du = (to, D"t") (4.6) 

where (A, B) is the usual scalar product. In fact it is better to use generalized moments 
and it can be shown that 

S(Qd. U )  = ( l /n )  lim IIm[R(&d, Z)l) (4.7) 
E-rOL 
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Table 3. Effective Fermi snlrering lengths and statistical weights for Al and Mn 

b:' = 3.669 fm 

by = -2.217 im 
bp = -5.848 fm 

gf' = 

gy = 
a? = 

b!' = 3.141 fm 6- A J - i  - I I  

with 
z = u + i p  

R(Qd, z) = l / (z  -a] - bt/ [z - a2 - b2/(z - a3 - b3 / .  . .)I]. 

a,+l = L / v n ,  b, = una/un-tn-~ 

and 

(4.8) 
The coefficients of the continued fraction are given by 

where the generalized moments are defined by 
U,, = (t("), t'"') Grin = (t("), Dt'"') 

with the recursion relation 
t("t') = (D - a  fl+l ])t(") - b t(fl-1). (4.9) 

Knowledge of D and t(') (all t(-") = 0) leads to the calculation of the a. and b,, 
coefficients by a recursive procedure; so it is possible to derive the inelastic neutron 
scattering cross section without any diagonakation. 

4.2. Introduction of the incoherentpart of the cross section 
It is important to remark that working with very large samples the spectral moments method 
allows us to take into account the isotopic disorder of the system. So the calculated 
differential cross section can be compared directly with the experimental results. In 
particular, it is possible to introduce into the cross section formulae (4.1) and (4.2) all 
the scattering features relative to any given atom. The 'disorder' due to isotope distribution 
and/or the existence of nuclear spins leads to the so-called incoherent part of the neutron 
scattering cross section. This can easily be done by the introduction for each atom 
individually of an effective Fermi scattering length b: which depends not only on the 
chemical nature of the atom but also on the isotope considered and on the coupling of the 
nuclear spin I with the neutron spin: 

(4.10) 6'' + -  - b" c + J-0: 

b! = b: - J-b? 
with a statistical weight g+ = ( I  + 1)/(2I+ I ) ,  and 

(4.11) 

with a statistical weight g- = 1 / (21+  I), where b," and bp are the coherent and incoherent 
Fermi scattering lengths for the isotope is. 

In the cross section calculation (4.1) and (4.2) the scattering lengths b$ are affected by 
the atoms according to a random distribution taking into account the statistical weights g* 
and the isotope proportions in the natural atomic species under consideration. 

In the case of AI-Mn alloys there is no isotope distribution; only nuclear spins need to 
be considered. AI and Mn have a nuclear spin; so from published tables (Sears 1984) we 
deduce the values of b$ given in table 3. These values have been used in all subsequent 
calculations. 
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4.3. Derivation of the weighted one-phonon DOS 

When the inelastic neutron scattering spectra are recorded on powder samples, the 
experimental results lead, after some transformations, to a neutron-weighted vibrational DOS 
for the studied sample (Lustig et a1 1985, Suck et a1 1980). In order to make a comparison 
with these experiments we have calculated the same quantities using an improvement of the 
spectral moments method (Benoit et al 1992). 

The neutron-weighted vibrational DOS obtained after averaging is given by (Lustig etal 
1985, Suck et a1 1980) 

which can be written 

(4.13) 

if we neglect the polarization and Debye-Waller factors. & ( E )  is the partial vibrational 
DOS, C, the concentration, uc the coherent scattering cross section and m, the mass of cd 
species atoms. & ( E )  is defined as the sum of the local DOS over all atoms of the a species. 

j ( E )  can be easily calculated in the following way: we consider working vectors t")(a) 
for each atom species. The components of these vectors are random variables according to 
the method described by Benoit et a( (1992). Then they are normalized according to the 
factors included in equation (4.13). It is also possible in this case to take into account the 
incoherence due to isotopes and spin disorder as explained in section 4.2. 

All computations have been performed on an IBM 3090-600 VF. As shown in table 2 
the rank of the matrix for the 21/13 approximant is higher than 2000000 with more than 
110000000 non-zero elements. Special matrix storage techniques have been developed for 
this work. 

5. Results 

The dynamical properties of crystalline and quasi-crystalline phases of AI-Mn have been 
calculated through the rational approximants of the modified Duneaudguey (1989) model 
(de Boissieu er al 1990): 1/1 for the a crystalline phase, and Ul ,  3/2, 5/3, 8/5, 13/8 and 
21/13 for the icosahedral phase. 

However, as can be seen in the results, there is very little difference between the highest 
two approximants: 13/8 and 21/13. So we believe that the 13/8 approximant is a good model 
to represent the true infinite quasi-crystal. 

5.1. The weighted DOS for Ihe crystal and quasi-crystal 

Theoretical neutron-weighted DOSS for the 111, 8/5 and 13/8 approximants are reported in 
figure 5. They can be compared with the experimental results (reported in figure 6) obtained 
by Miceli et al (1986) with crystalline and quasi-crystalline Aio.sMnc.2 alloy powders. 

We note that the agreement is good for the crystalline phase. For the icosahedral phase 
a DOS reduction appears at the centre of the frequency spectrum. This feature increases as 
the size of the approximant increases and is certainly due to an increase in the dispersion 
of the atomic environment in quasi-crystals. 
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Energy (In msV) 

Figure 5. Calculated weighted DOS for AI-Mn nlloy: rational I/ [ .  8/5 m d  13/8 approximants 
of the imsnhedral phase (A.U., arbitrary units). 

The DOSS of the 8/5 and 1318 approximants are very similar; so they surely yield a 
good estimate for the DOS of the perfect infinite quasi-crystal. Comparison with experiment 
shows that the theoretical curve is a little higher than the experimental curve. The origin 
of this discrepancy is not clear and this point needs further investigation. 

In the low-frequency region the theoretical curve for the icosahedral phase is above 
the curve for the crystalline phase. Such a feature has been found experimentally by Suck 
(1988) for Al-Mn-Si alloys. 

5.2. Inelastic neutron scattering 

The dynamical properties of the i-(AI-Mn-Pd) phase have been recently investigated through 
inelastic neutron scattering studies. As we saw in the introduction of this paper, these 
dynamical properties should be similar in both phases (i-(Al-Mn) and i-(AI-Mn-Pd)). 

In order to establish a parallel between the experiments performed on a perfect Al- 
Mn-Pd quasi-crystal (de Boissieu et af  1993a, b) and the calculations on the A1-Mn model, 
we have investigated the inelastic neutron scattering of A1-Mn for two directions of the 
(Q,, Qy) plane of the reciprocal space. 

The neutron diffraction pattern of the AI-Mn phase and the AI-Mn-Pd phase in the 
twofold (ex, Qy) plane of the reciprocal space are shown in figure 7. The computations 
have been performed for some of the reciprocal space points as reported in the experimental 
work. 

52.1. Pseudo-dispersion curves. We present in figure 8(a) the results of the computation 
of the inelastic scattering cross sections between the points D and E of the (Q,, Qy) plane 
and in figure 8(b) the already-published results on Al-Mn-Pd for the same points. 
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Figure 6. Experimentd weighte4 DOSS for Al".gMnaz (from Miceli er a1 1985): (a) icosahedral 
phase; (b)  e crystalline phase: (c) comparison. 

In both spectra we can follow a transverse acoustic mode (indicated by an mow) 
originating from the Bragg peak D. The acoustic phonon branch originating from the Bragg 
peak E is not as clearly defined. These peaks (indicated by crosses) are more intense in the 
AI-Mn modelization than in AI-Mn-Pd. Finally, from D to E, we can follow a shoulder 
(indicated by an asterisk) on the high-frequency side of the acoustic peak originating from 
D. This shoulder corresponds to the longitudinal acoustic branch originating from C. The 
experimental and calculated pseudo-dispersion curves are reported in figure 9. 

Previous results obtained by calculation on 1D systems (Ashraff and Stinchcombe 1989, 
Benoit etal 1990, Azougarh 19911, i.e. the existence of pseudo-dispersion curves and quasi- 
Brillouin zones in quasi-crystalline structures are now well established experimentally for 
AI-Fe-Cu alloy (Quilichini et a1 1990, 1992. 1993), AI-Li-Cu alloy (Go ld"  et al 1991, 
1992) and AI-Mn-Pd alloy (de Boissieu et a1 1993a, b). They are here confirmed by a 
physically realistic 3~ model. 

If the presence of Pd does not change the acoustic modes greatly (apart from a scaling 
factor), the frequencies of the optic modes are strongly shifted, as can be expected from 
the comparison of the experimental weighted DOSS for AI-Mn (Miceli et al 1986) and Al- 
Mn-Pd (Suck 1993). This explains the presence of the 5 THz peak found for AI-Mn and 
completely absent for AI-Mn-Pd (figure 8). 
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Figure 7. Twofold (e,, Q,.) reciprocal scattering plane of (U )  the i 4 A l - h )  and ( b )  the i- 
(AI-Mn-Pd) phases. The area of the spots is proportiowl to the intensity of h e  corresponding 
Bragg pe&. 

5.2.2. Broadening. We reproduce, in figure 10(a), 12 experimental constant-Qd spectra (de 
Boissieu etal 1993a) for Al-Mn-Pd. The corresponding momentum transfers Q d  are of the 
form Qd = QB + q where Qe refers to the Bragg spot D in figure 7 and q is directed along 
Qy. We present the results of the computation, for the 111 approximant in figure 10(b) 
and for the 13/8 approximant in figure lO(c) of AI-Mn, for the first six spectra. FinalIy 
we report in figure 10(d) the behaviour of the inelastic neutron scattering cross section 
computed at point DI. (141 = 0.45 A-'), for all approximants from 1/1 to 21/13. 

We note that, a i n  the experiment, the width (after deconvolution) of the acoustic 
phonon line increases as the phonon wavevector (or the frequency) increases. These effects 
have been already mentioned by Quilichini et al (1992, 1993) for AI-Fe-& 

We report i n  figure 11 the behaviour of the five first peak widths (after deconvolution) 
as a function of the size of the approximants. For the 111 and U1 approximants the width 
corresponds to the phonon lifetime introduced in the computation (E in equation (4.7)); so 
the deconvoluted width is in fact zero and no special effects are observed. The broadening 
becomes noticeable from the 312 approximant upwards and is nearly the same for the highest 
approximanu. 

The change in width with phonon wavevector agrees very well with the experimental 
observation if we use at least the fourth approximant. To show this feature we have 
reproduced in figure 12 the AI-Mn-Pd experimental deconvoluted width curve (de Boissieu 
ef nl 1993a) and the corresponding curve obtained with the highest approximants of the 
i-(AI-Mn) phase. 

Figure IO@) is a good illustration of the effect of approximant size on the line position 
and lineshape. We note that, for a given phonon vector, the peak frequency strongly depends 
on the approximant size. It is necessary to work with at least the fourth approximant to 
obtain stabilization of the frequency at the quasi-crystal value. 

6. Discussion 

We focus our attention on the broadening of the acoustic phonon lines. It is interesting to 
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Energy (THz) Energy (THz) 

Figure 8. (a) Computed inelastic scattering cross sections for points between D and E for 
AL-Mn higher approximanls (A.U., arbimuy units): T. Vnnsverse acoustic peaks from D: t, 
transverse acoustic peaks from E, *, longitudinal acoustic peaks from D. qph stands for IqI, (b) 
Experimental inelastic scalering cross sections of an AI-Mn-Pd quasi-cwstal for points between 
D and E (from de Boissieu et a1 1993a). 
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Figure 9. Experimental and caIcuiated dispersion curves betveen the points D and E. (a) 
Experimental curves from de Boissieu er 01 (1993b). (b)  Calculated curves: 0. transverse 
acoustic peaks from D; T, transverse Bcoustic peaks from E: ., longitudinal acoustic peaks 
fmm D. 

compare the quasi-crystal on the one hand with perfect crystalline systems and on the other 
hand with metallic amorphous systems. 

For perfect crystalline systems, if the anharmonicity is not too strong, the linewidth is 
a constant. This is related to the infinite spatial extension of the modes. 

For metallic amorphous systems it has been shown by Hafner (1981, 1983a.b. 1985) 
that it is possible to define one, and only one, Brillouin zone. The neutron scattering spectra 
exhibit sharp inelastic peaks near Qd = 0 and it is also possible to obtain the longitudinal 
acoustic dispersion curve. The inelastic peaks exhibit a large broadening with increasing 
momentum transfer. This broadening is a consequence of the localized character of the 
vibrational modes in amorphous systems. Figure 13 taken from the work of Leadbetter 
(1973) illustrates these features nicely. 

For a quasi-crystal with long-range order it is possible to observe acoustic modes 
associated with strong Bragg spots. In the ID model (Fibonacci chain) it has been shown 
(Benoit et a1 1990) that there are several continua of critical modes and that localization 
increases with increasing frequency. In the 3D model, from equation (4.2). we note that, for 
systems with only one atom species, the inelastic scattering cross section is directly related 
to the spatial Fourier transform of the mode eigenvectors. So it is natural to interpret 
the increasing width of acoustic peaks with increasing frequency as a consequence of the 
increasing degree of localization. However, owing to the long-range order character of the 
quasi-crystalline structure, the localization is certainly 'critical', as there is no reason for 
localization in a particular region of the structure. 

Results obtained by Los et al (1993) are derived from a 3D icosahedral Penrose tiling 
model. They studied the scaling behaviour of the spectrum by a multifractal analysis. Their 
main results concern the existence of localized modes only in the very upper end of the 
spectrum, the other states being normal extended states. They conclude that the phonon 
states behave more critically in the Fibonacci chain than in the icosahedral Penrose tiling. 
Our 3D model, which is realistic since it simulates the properties of the AI-Mn quasi- 
crystal, leads to slightly different conclusions concerning the character of the eigemodes; 
in our calculations the localized character appears progressively with increasing frequency. 
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Figure 10. (a) Experimental inelastic scattering cross sectians of an AI-Mn-Pd quasi-crystal far 
12 points from Bragg spot D in the Qu direction (from de Boissieu eta1 1993a). (b)  Computed 
inelastic scattering cmss sections for six points from Bngg spot D in the Qr direction for the Al- 
Mn VI zppmximant (A.U.. arbitrary units). The six cums h m  the leh to the right correspond 
to q = 0.15 A-lj 0.25 0.35 A-1, 0.40 A-l, 0.45 A-' and 0.55 .&-I, respectively. (c )  
Computed inelastic scattering CIOSS sections for six p in ts  fmm Bragg spot D in the Q, direction 
for the AI-Mn 13/8 npproximant (nearly quasi-crystalline phase) (AS.,  arbitmy units). The six 
curves from the left!o the right correspond to q = 0.15 A-'. 0.25 A-', 0.35 A-'. 0.40 A-1. 
0.45 A-' y d  0.55 A-l, respectively. ( d )  Cdoulated transverse inelastic neutron scattering for 
q = 0.45 A-' for the first seven rational approximants (A.U., arbitmy units). 
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Figure 10. (Continued) 

Recent work by Hafner and KrajEi' (1993) confirms the existence of localized modes (they 
used the expression 'confined' modes) due to local topological frustrations, in a 3D model 
for i-(AI-Zn-Mg). They used. for the calculation of the scattering cross section, either 
diagonalization or the recursion method (until the 5/3 approximant with 12380 atoms for i- 
(AI-Zn-Mg)). Our calculation method (the spectral moments method) allows us to calculate 
the inelastic neutron scattering cross section, and the DOS for larger approximanis (until the 
21/13 approximant with 668 236 atoms for i-(Al-Mn)), taking into account isotopic and 
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Figure 11. Calculated widths of inelastic neutron scattering peak.s for ntional appmximants of 
an AI-Mn quasi-crystal. 

Figure 12. Experiment4 and calculated dispersion and deconvoluted width Ewes for points 
from Bragg spot D in the Q, direction: 0, experirnentd widths; 0, calculated widths: e. the 
experimental peak energies; +, calculated peak energies. 

incoherent effects. 
To illustrate the relation between localization and width we develop a ID model where 

the eigenvectors are a convolution product between a localized mode and a 'Dirac comb': 

where the r, are the equilibrium positions of the particles (rn = nu), the RN the positions 
of the Dirac peaks and the @,(a,) the localized wavefunctions. Taking 

$jW = exp(-yilu,I)exp(ikju.) (6.2) 
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Figure 13. Phonon dispersion in an amorphous system (taken from Leadbetter 1973). 

with 

yj = wj /g  kj = O ~ / V  (6.3) 

(Debye model) v being the sound velocity, k j  the phonon wavevector and l/y, the 
localization factor, it is easy to show that the neutron cross section given by (4.1) behaves 
as 

apart from a form factor depending on the particular structure of the Dirac comb. This 
expression is obtained by changing the discrete summation over j in (4.1) by a continuous 
summation over the frequency w .  

The results of equation (6.4) are shown in figure 14 where six inelastic neutron scattering 
spectra are plotted. The six spectra correspond to Qd = QB t rqo, r = 1,2,3, .  . , (with qo 
arbitrary fixed and Qe = 0). It can be easily seen in figure 14 that the broadening of the 
line is proportional to o (or to q = rqo), as it can be deduced from a limited expansion of 
equation (6.4). So the critical character of the modes induces a broadening of the acoustic 
phonon peaks, the intensity of these peaks depending on the form factor of the Dirac comb. 

fREllUENcY (*.U,) 

Figure 14. ID inelastic neutron scattering crass sections for a chain 6th 'critical' modes (A.U., 
arbitrary units). The siX spectra from left to right correspond to Qd = Qa + q, with QB = 0 
and q = go, 2qo,3qo.. . . with go arbitrarily fixed. 
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As a conclusion, in quasi-crystals, the long-range order gives rise to acoustic sheets 
near the intense Bragg spots. This effect has already been mentioned for ID systems and is 
now well established experimentally and theoretically for 3D systems. The behaviour of the 
phonon peak widths can be easily interpreted as due to the existence of continua of ‘critical‘ 
modes. These modes become more and more ‘critical’ as the peak frequency increases. 

To confirm the ‘critical’ character of the modes in a 3D realistic quasi-crystalline system, 
further investigation will be necessary especially by the Green function technique. 
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